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Abstract

This paper, proposes a representation theorem for upper locally distributive lattices
using colored posets. A colored poset P = (X, <,7), is the poset P = (X, <) equipped
with a coloring v : X — IV of its comparability graph. We show that the set of colored
ideals of any colored poset, ordered by inclusion is an upper locally distributive lattice,
and there is an isomorphism between these lattices and reduced colored posets. We also
discuss the relation between upper locally distributive lattices and antimatroids. We
close, this paper by giving algorithmic aspects for generating colored ideals and colored
linear extensions of colored posets.
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This paper is motivated by representation theory and reconstruction algorithmic aspects
for lattices. All objects considered here are supposed to be finite. For definitions on lattices
and ordered sets not given here, see Davey and Priestley’s book[2].

The main result of this paper, is that, any upper locally distributive lattice is
isomorphic to the lattice of all colored ideals of a colored poset.

Let us first recall the famous Birkhoff’s representation theorem for distributive lattices.

Theorem 1 [1] Any distributive lattice L is isomorphic to the lattice of all order ideals
Z(J(L)), where J(L) is the poset induced by the set of join-irreducible elements of L.



An essential algorithmic aspect of Theorem 1, is the efficient reconstruction of a dis-
tributive lattice L as the lattice of order ideals of the poset J(L)[5]. For general lattices,
several representations have been proposed, but many of them use both join-irreducible and
meet-irreducible elements, which are not simple according to Davey and Priestley point of
view [2, 8, 10, 11, 19]. The first representation using join-irreducible elements and some
essential elements (not necessarily meet-irreducible) was introduced by Wille [18], followed
by Duquenne [4] by introducing the join-core of a lattice L as the smallest partial join-
semi-lattice E(L) such that elements of L are the order ideals of E(L) closed by the join
operation. Such a representation is still not simply identifiable and no bounds are known
about the size of E(L).

Dilworth [3] has introduced upper locally distributive lattices and has observed that they
are close to distributive lattices. Upper locally distributive lattices have been rediscovered
several times, and have many names in the literature (as Antimatroid, Join-distributive
lattices, ...). For a survey, see Monjardet [14] which contains many characterizations. In
particular, a lattice L is upper locally distributive if for any = € L, the sublattice [z, z*] is
boolean, where z* =\/{y € L | y covers z} and \/ is the join operation.

This paper proposes a representation for upper locally distributive lattices using colored
posets. This confirms Dilworth’s observation since posets are just colored posets where
all elements have different colors. We show that there is an isomorphism between upper
locally distributive lattices and reducible colored posets. We close this paper, by showing
that upper locally distributive lattices have efficient generating algorithms similar to those
available for distributive lattices [5, 15].

1 Colored Posets

Definition 1 A colored poset, denoted by P = (X, <,7), is the poset P = (X, <) equipped
with a coloring v : X — IN such that © < y implies v(z) # v(y). In others words, v is a
coloring of the comparability graph of P.

Let P = (X, <,7) be a colored poset and I a subset of X. I is said an order ideal of P
(ideal for short) if # € I and y < x implies y € I. We define the colored ideal C(I) = {i €
IN | 3z €1,v(x) =1} as the set of colors in I. Note that two different ideals may have the
same set of colors as shown in Figure 1; i.e. C({a,b,c} = C({a,b,d} =C({a,b,c,d} = {123}.

The set of all colored ideals of P, denoted by C(P), is a union closure system containing
the empty set, and hence a lattice; called the lattice of all colored ideals of P.

Remark 1 The set of colored ideals of a colored poset is not always an intersection closure
system, otherwise it would be a distributive lattice. Figure 1 shows that {23} N{13} = {3} ¢
C(P).
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Figure 1: An example of a colored poset and its lattice of colored ideals.

We define the mapping gen : C(P) — Z(P) by gen(C) ={xr € X | v({ z) C C} (ie.
the greatest ideal I of P such that y(I) = C) where v({ z) = {7(y) | y < z} and Z(P)
the set of ideals of P. Clearly, for any C' € C(P) and a minimal element x € P \ gen(C),
we have y(z) € C. Note that the mapping gen is an order embedding of C(P) into Z(P).

Proposition 1 Let P = (X, <,7v) be a colored poset. Then C(P) = (C(P),C) is an upper
locally distributive lattice.

Proof: To show that C(P) is an upper locally distributive, we need to proof that for any
C € C(P) the set of all colored ideals covering C' generates a boolean lattice [3].

Let C € C(P) and K = {y(z) | « is minimal in P\ gen(C)}. We note that for any
c € K, ¢ ¢ C by maximality of gen(C), and therefore the set {C U {c} | ¢ € K} are the
only covering elements of C. So, for each subset A € 2K, C' U A is a colored ideal of P.
Thus the interval [C,C U K] is a boolean sublattice. [J

To show the isomorphism between the lattice of all colored ideals of colored poset and
an upper locally distributive lattice, we need to recall some properties of lattices.

For a lattice L lattice, we denote by Bip(L) = (J(L), M (L), £1) the representation of L
by its irreducible bipartite poset. Markowsky [11, 12] showed that the union closed system
F(L) = {AY | A C J(L)} ordered by inclusion is isomorphic to L, where AY = {m €
M(L) | (3j € A) j £ m}.

Property 1 [13] Let L = (X, <) be an upper locally distributive lattice. For any A, B €
F(L), if B covers A then |B\ A| = 1.

Let L = (X, <r) be an upper locally distributive lattice. We define the poset

P(L) = (J(L),<pr,~) by the induced poset of join-irreducible elements J(L) = (J(L), <p,
) and a coloring 7 : J(L) — M (L) with v(5) = {5}V \ U]-,<Lj{j'}U. Now, let us show that
P(L) is a colored poset.



Lemma 1 Let L = (X, <) be an upper locally distributive lattice. Then
P(L) = (J(L),<r,7v) is a colored poset.

Proof: It suffices to show that each element j € P(L) has exactly one color, since by
definition of v two comparable elements have different colors.

We know, that for any lattice, a join-irreducible element j covers j, with j, = \/{j' €
J(L) | j' <r j} corresponding to the set U]-,<L]-{j'}U in F(L). Using Property 1, we have
{737 \Ujr<, ;{371 = 1 and therefore |y(j)| = 1. O

Main Theorem 1 Any upper locally distributive lattice L is isomorphic to the lattice of
all colored ideals C(P(L)).

Proof: It suffices to show that C(P(L)) = F(L).

Let C € C(P(L)). Then I = gen(C) is an ideal of J(L) and by definition of F(L)
IV ¢ Fr.

Now let A € Fr. Then there exists a set I C J(L) with IV = A. Suppose that I is
maximal with this property, thus I is an ideal of J(L) and therefore y(I) = IV = A €
C(P(L)). O

Clearly, we cannot conclude as in the distributive case, that there is an isomorphism
between colored posets and upper locally distributive lattices. Since two non-isomorphic
posets can have the same lattice of colored ideals (see Figure 2). To establish a bijection,
the reduction of a colored poset has to be introduced, using the characterization of the
poset of irreducible elements [11].
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Figure 2: A colored poset and its reduction
Definition 2 Let P = (X, <,7) be a colored poset. P is said to be reduced if for any
x € X there is no ideal I C X \ {z} such that v(I) = v(] z).

Proposition 2 [15] There is an isomorphism between lattices and irreducible bipartite
posets.



Two colored posets P = (J, <p,7) and Q = (K, <q, 3) are said to be isomorphic if and
only if there is an isomorphism ¢ from (J, <p) onto (K, <q) and for z,y € J, v(z) = v(y)

iff B(¥(x)) = B(¥(y))-
Now the isomorphism follows immediately from Proposition 2, since irreducible bipartite
posets for upper locally distributive lattices are isomorphic to reduced colored posets.

Corollary 1 There is an isomorphism between upper locally distributive lattices and reduced
colored posets.

The following theorem relates antimatroid and previous results. For more details, on
matroids and antimatoids, see [9].

Definition 3 A union closure system F is an antimatroid iff for every A # 0 € F there
exists m € A such that A\ {m} € F.

Theorem 2 Let F be a union closure system. Then the following statements are equiva-
lents:

1. F is an antimatroid.

2. L= (F,C) is upper locally distributive lattice.

3. F is the set of colored ideals of the colored poset P(L).
4. For any A,B € F, if B covers A then |B\ A| = 1.

2 Algorithmic aspects of colored posets

This section discuss algorithms for generating colored ideals and colored linear extensions
of a colored poset.

2.1 Generating colored ideals

Let P = (J,<,7) be a colored poset. Our strategy to generate colored ideals of a colored
poset is the same as generating classical ideals of a poset [5]. Namely, we choose a minimal
j € J. We first generate the colored ideals containing v(j), and we backtrack to generate
those not containing (). This idea is formulated in the following proposition:

Proposition 3 Let P = (J, <,7) be a colored poset, C' a colored ideal of P and j a minimal
element in P\ gen(C). Then

1. v(j) ¢ C.



2. gen(C'U~(j)) = gen(C)U{j' € J | (1 j') S CU~()}-

3. The colored ideals containing C U~ (j) are the colored ideals of the restriction of P to
J\ gen(C U~(j))-

4. The colored ideals not containing C U ~(j) are the colored ideals of the restriction of
Pto JT\Ujer | 4= 13"

Algorithm 1: COLORIDEAL(C,LJ)

begin
if 7 =0 then
1 | Process((C,I));
else

j = choose a minimal element of J;

COLORIDEAL(C U «(j),gen(C U ~(3)), J \ gen(C U ~v(j))); the colored
ideals containing {C' U ~v(j)}

4 COLORIDEAL(C,I, J\ U{j’eJ | v(GyecuyG)y T 7");the colored ideals not
containing {C' U~(j)}

end

Theorem 3 Algorithm 1 generate the set of all colored ideals of P using O(A..|C(P)|) time

complexity, with A, the mazimal value of Z{je] | ()=} A(j) for any color ¢ € P, where
A(j) is the mazimum in-degree of j in P.

Proof:
The correctness of Algorithm 1 follows from Proposition 3.
For each call of the algorithm COLORIDEAL(C,LJ) :

e We compute gen(CU~(j)) and delete them from J. To do so, we need only to compute
theset I' ={j' € J | v(l j') CCU~(j)}. Clearly,if z € I' and y < z then y € I'.
Thus we can compute I’ by simply deleting minimal elements. The time complexity
needed to delete I' can be charged on previous colored ideals contained in C' U ~(j),
since any color of C'U v(j) has given a new colored ideal. Thus the time needed for
one colored ideal (generated by a color c) is bounded by > ric; | o (jy=cy A0)-

e We compute the set I” = {j' | 7' € J, ~(j') = v(j)} and delete them and their
successor from J. To locate the set I” can be done in O(|{j' € J | v(4') =~v()})



using a lookup table. Deleting the elements of I” from J can be done by using
a counter of each element of J initialized to the number of its predecessors. The
counter of an element become 0 when the element is minimal, and co when is deleted.
This is a classical technique used for generating ideals for poset [5].

Thus the amortized time complexity per ideal is bounded by A.. O

For Gray code generation of colored ideals, Pruesse and Ruskey [17] have shown that
the elements of an antimatroid can be generated in a Gray code manner, such that two
successive elements differ by at most 2. Hence, according to Theorem 2, their algorithm
can be applied for generating colored ideals of a colored poset.

Proposition 4 [17] Let P = (J,<,v) be a colored poset. Then there exists a sequence
S =(0=C,Cs, -, Cle(p)|) for colored ideals of P such that |C; \ C;—1] < 2.

Remark 2 Generating colored ideals in lexicographic order (as for ideals), by simulating
a covering tree rooted at the bottom is not always possible [6]. Figure 8 shows a counter-
example.

Figure 3: The colored ideal 234 cannot be reached from the bottom in a lexicographic order.

2.2 Generating colored linear extensions

Let P = (X, <,7) be a colored poset and ¢ = z1,x3,...,x, a linear extension of P. We
denote by F'irst(c) the first element in o such that v(z) = c. For each linear extension o, we
associate a colored linear extension C(c) = ¢y, ¢2, ...,¢m (m < n) of P such that ¢; <¢(o) €2
iff First(c1) <, First(cz).

Corollary 2 Colored linear extensions of P are in bijection with mazimal chains of the
colored ideals lattice.

Proposition 5 [17] There exists a combinatorial Gray code for generating colored linear
extensions of a colored poset.



3 Conclusion

We have introduced the notion of a colored poset which is a generalization of a classical
poset. The notion of colored ideals lattice has allowed us to generalize Birkhoft’s represen-
tation theorem for distributive lattices, and then inherit its algorithmic aspects.

The generalization of colored posets to set-colored posets for general lattices seems
to have nice properties. Indeed, many classes of lattices can be characterized by their
associated colored poset. Moreover, we think that representations by colored posets can be
used as a kind of distributivity measure of a lattice. The following proposition shows such
an example:

Proposition 6 Let L be an upper locally distributive lattice. If the poset J(L) = (J(L),<pr)
s an interval order then L is distributive.

Proof: Let P(L) = (J(L),<r,7) be the associated colored poset of L. It suffices to show
that all elements have different colors.

Since, (J(P), <) is an interval order, then there exists a sequence ji, ja, ..., jn of P(L)
such that | j1 \{ji} € Jj2\{j2} C... € ljn\{jn}. Now, suppose that v(j;) = v(z)
for i < k. Then v(} jr) = v(I jr \ {dx}) U~ ji) since | j; \ {i} € | jk- Thus P(L) is
not reducible which is a contradiction. [J

This generalization and opens problems can be found in [7, 16].
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